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Aquaculture is a promising and developing industry worldwide. One of the first step in monosex culturing,
particularly in Nile tilapia, is the production of all-male fry; hormones are widely used in this respect. It is known
that exogenous treatment with hormones disrupts various systems in the body including the immune and en-
docrine systems. There has been a growing interest in how hormones shape the biology of the fish. Many re-
searchers all over the world explored how androgen can interact with many of the body systems; however, rarely

any of them tried to improve the hormonal method or to find an alternative. The gate is open for research in this
field. This review focusses on the potential effects of hormones, particularly androgens on fish immunity, and the
up to date solutions (however, they are rare).

1. Introduction

Decades ago, many researchers investigated the role of hormones in
modulating the response and function of different body systems in
various vertebrates. It is clear that sex hormones shape the different
body systems, including the two arms of the immune system (innate
and adaptive).

During the early stages of juvenile fish development, genes re-
sponsible for sex determination and sex chromosomes through ster-
oidogenesis (Fig. 1) are guiding the gonads towards being male or fe-
male. The steroid hormones production and level could be artificially
disrupted during this stage, which results in sex change without af-
fecting genotype. Most methods for production of monosex fish target
the steroidogenesis during the early stage of development.

This review will discuss the immunological aspects of androgen use
in fish with little supportive studies in mammals, and also will describe
briefly the old and recent tested methods for all-male production, the
impact of androgen on mortality and environment and finally the im-
pact of oestrogens on immunity.

2. Methods for the production of all-males

Monosex production with its pros and cons is needed in aquaculture
industry. Because monosex culturing, especially of all-male fish, has
many advantages, such as the lack of spawning, rapid growth and
uniform size and high body weight [2-5], farmers prefer to use this
system in production. One the other hand, some of the methods used in
this respect have negative effect on several biological and

environmental levels, which will be discussed here.

Many methods (summarised in Fig. 2) were used for this purpose,
but one or two methods are still efficiently used. These methods were
extensively discussed in Ref. [3], and additionally there are different
methods were tested but with less preference and success, such as heat
treatment and pulse-electric field induction.

2.1. Manual sexing

Sorting is an old aquaculture method in which the separation and
sexing processes are done when the secondary sexual characteristics of
the fish are well developed or when the fish are young adults [2]. The
grading process acts as a stress for both the fish and the labourers;
usually, the results are neither accurate nor satisfactory. Furthermore,
females have to be discarded which means fingerling supply goes down
to nearly half and farmers loose.

2.2. Inter-specific hybridization

The hybridisation of two specific species, such as O. niloticus x O.
viriabilis, can produce monosex populations. This situation can be seen
in tilapia as well as in other species, such as sunfish. This technology
was improved by Hulata et al. [6] through the selection of broodstock
that produce high YY% progeny.
2.3. Production of all YY male Nile tilapia

Super-males “YY” can be produced by intercrossing between
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Fig. 1. Simple schematic pathway of fish steroidogenesis.
Testosterone is converted to 11-ketotestosterone (11-KT) via the
actions of 11B-hydroxylase and 11B-hydroxysteroid dehydrogenase.
11B-hydroxysteroid dehydrogenase converts cortisol to cortisone.
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Fig. 2. The different methods used in monosex production, in which the hormones are the
widely used technique.

converted females and males. This method depends on the use of oes-
trogens with a selective progeny testing to get an YY broodstock males
or females (see Refs. [3,7] for more details). However, this method
takes a long time to obtain an YY broodstock males or females, and the
new progenies should be theoretically all-males without any further
treatment.

2.4. Heat treatment

Juvenile Nile tilapias (10 days old) were exposed to heat treatment
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at temperatures ranging from 26 °C to 37 °C. The optimal temperature
to achieve the best sex shift towards males and survivability was
36 * 0.5 °C. The male proportion and fry survival percentages were
86.31% and 65.25%, respectively [8].

2.5. Pulse-electric field induction

Pulse-electric field induction is a newly developed method for
monosex production in tilapia. The eggs of Nile tilapia (2-3 days post-
fertilisation) were carefully induced in 3 square-wave electric fields of
87.50 kV m ™. This method achieved 89.25% sex reversal of the eggs
with less than 25% egg death [9].

2.6. Hormonal sex reversal

Although several methods can be used for monosex production (all-
males or -females), hormonal treatment is the method that is preferred
and most often used. Hormonal treatment results in monosex, particu-
larly all-male, percentage ranges from 98% to 100% in most cases,
however, in the other methods the percentage is less than 90% in the
best cases. In addition, it is easy to be used.

In a wide variety of species, sexually undifferentiated fry can be
successfully converted to monosex fry if they are treated with hormones
or hormone analogues under controlled conditions. Many types of
steroids are used in the production of all-male tilapia. For example, 19-
norethyltestosterone, fluoxymesterone, ethyltestosterone and 17 a-
methyltestosterone (MT) [10], dihydrotestosterone (DHT), androste-
nedione, trenbolone acetate, mesterolone, testosterone and 17 a-ethy-
nyltestosterone [11] and 17 a-methyldihydrotestosterone [12-14] have
all been used. In addition, Khanal, et al. [15] tested a natural source of
testosterone (carp testis). Nonsteroidal aromatase inhibitors, such as
fadrozole [16,17] have also been used for all-male production. All of
these compounds result in a higher percentage of male fish, and they
are mostly used via an oral route. However, Nile tilapia fry exposed to
17 a-methyldihydrotestosterone (500 pg/L) on day 10 and day 13 post-
fertilisation, for 3 h, were successfully masculinised [18].

MT is the hormone that is most often used in aquacultures, and the
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only method used in all-male production in many countries, such as
Egypt and Philippines. MT has been tested in monosex production in
several species, such as spotted scat [19] and medaka [20]. In medaka,
goldfish and tilapia, the effective dose of MT required to induce all-
male production is 20-30 mg/kg diet; in rainbow trout, the effective
MT dose is 0.1-3 mg/kg diet. In zebrafish, the MT dose ranges from 1
mg/kg diet to 100 mg/kg diet [21]. In Nile tilapia, feeding of dietary
MT begins when the larvae have finished yolk sac absorption for 21
days. Different doses of MT (40 mg MT/kg, 50 mg MT/kg, 60 mg MT/kg
or 70 mg MT/kg), can efficiently produce all-male fry [22-26].

3. The potential impact of androgen use

There are many concerns about the effect of hormones, particularly
androgens, used in aquaculture; such cases are depicted in Fig. 3.

3.1. The impact of androgens on mortality

In general, fish larvae rearing and production are usually hindered
by high mortality rates. On the other hand, any disruption in the im-
munity of fish larvae will threaten their survivability. Synthetic steroids
that used in monosex production cause a high mortality rates in several
species. In fathead minnows, MT negatively affected the survival rate
[27], and caused mortality rates of more than 50% in the treated Sabaki
tilapia [28]. Recently, Abo-Al-Ela et al. [29] demonstrated that MT
increases the mortality rate of the treated fry in a dose-dependent
manner; moreover, this mortality is correlated with immune-related
gene expression throughout the treatment. Furthermore, the mortality
rate has been shown to increase when increasing the dose of MT in
convict cichlid [30].

3.2. The impact of androgens on environment

Environmental detection of potential hazard substances is taking a
great interest, which these substances could affect non-target organisms
causing undesirable action on the short or long run. Androgens and
oestrogens have been detected as pollutants in the environment, espe-
cially in drained agroecosystems [31]; androgens effect can negatively
extend to non-target species, including early-life stages of fish, which
caused cytogenetic toxicity, embryo malformations and hatching delay
[32]. Rivero-Wendt et al. [33] suggested the potential environmental
risk of MT at environmentally relevant concentrations (0.004 mg/L),
which was sufficient to induce vitellogenin (Vtg) alterations as an in-
dicator of environmental stress or pollution. MT could disrupt fish fe-
cundity at environmentally relevant concentrations, and this effect can
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Fig. 3. Diagram illustrating the different aspects
of androgens on aquaculture (Nile tilapia as an
example) and environment.

Immunity

differ from species to another [reviewd in [34]].

On the other hand and regarding to androgen withdrawal and re-
sidues, the adult monosex fish showed high MT concentration levels in
the serum and muscle [35]. This finding is in contrast to the results
reported by Khalil et al. [36], which did not detect any traces of hor-
mone in the muscle. This is possibly due to the different conditions
during samples collection or the various environmental effects or con-
ditions.

3.3. The impact of androgens on immunity

Regarding to the immunity, steroid hormones play a vital role in
modulating the immune system [37,38]. However, there is a lot of
debate concerning the effect of androgens in suppressing or stimulating
the immunity level. In other words, they may positively or negatively
affect the health and growth of fish.

On the androgen level, gene networks related to innate immune
responses are affected by DHT treatment, as seen in the fathead minnow
[39]; and by MT in Nile tilapia [29,40]. MT is a severe endocrine dis-
rupter [41] and has a genotoxic effect on human lymphocytes; it also
increases the frequency of sister chromatid exchanges and decreases
cell cycle kinetics [42]. In Egypt, Nile tilapia monosex farms have been
reported to have low levels of RBCs and lymphocytes [35]. In addition,
the disruptive effect of MT was extended to the antioxidant enzyme
activities and gene transcription following exposure or dietary intake in
Nile tilapia fry [29,43]. Other steroids, such as 11-ketotestosterone (11-
KT), have been reported to suppress innate immune responses and re-
spiratory bursts in three-spined sticklebacks and common carp [44,45].

In addition, Chinook salmon's leukocytes incubated with testos-
terone, MT or mibolerone showed a significant decrease in antibody-
producing cells [46,47]. Even in chickens, the feeding of mibolerone
during their first 7 weeks caused a regression of the bursa of fabricius
[48]. Gilthead seabream that received testosterone microencapsulation
implants also showed an early pro-inflammatory but later mixed pro-/
anti-inflammatory stimulation [49]. Similarly, MT primed several im-
mune, cellular apoptosis and detoxification transcripts level but sup-
pressed them at the end and after the treatment in Nile tilapia fry [29].

Further reports have showed that at the time of sexual maturation in
fish, the immune response was suppressed in response to the high
plasma testosterone levels in spring Chinook salmon in vitro [50].
Testosterone in high doses causes immunosuppression, including a
compromised T-cell immune response [51,52], and was found to inhibit
transformation in phytohaemagglutinin and purified protein derivative
stimulated lymphocytes in vitro [53]. Pre-treatment with testosterone
has an immunosuppressive effect before the onset of louse infection in
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Atlantic salmon, and this has been supported by the suppression of
genes with important roles in the inflammation and immunity [54].

Further support the idea that in mammals, several studies reported
that androgen deprivation in males is accompanied with thymus en-
largement [37,38,55-58], enhancement of multiple immune responses
and increases in the cellularity and size of primary and peripheral
lymphoid organs [56]. Interestingly, treatment with testosterone or
DHT post-castration results in the inhibition of thymic rejuvenation and
the decreased proliferation and apoptosis augmentation of thymic T-
cells [37,38,55-57,59-61].

These findings have been confirmed in humans where testosterone
treatment in androgen-deficient men caused a decrease in the thymic
output of T-cells [62]. Taken together, these results show the suppres-
sive effect of androgens on the development of the thymus and, sub-
sequently, on T-cells. Moreover, it is known that women have a more
active response to viral vaccines, including influenza [63-65]. Male
mice respond to T-dependent immunizations, but not as well as females
[66,671].

In a previous study, neonate mice showed an increase in hae-
moglobin, lymphocyte count, immunoglobulin M (IgM) antibodies and
cell-mediated immune response to grafting; and a decrease in neu-
trophil granulocytes with divided nuclei and immunoglobulin G (IgG)
antibodies after the administration of 1 mg testosterone propionate
[68]. Rettew et al. [69] found that castrated (androgen deficient) mice
are significantly more susceptible to endotoxic shock. Notably, this
could be reversed when the castrated mice were given exogenous tes-
tosterone.

In respect to antibodies, IgM is the first that appears following an-
tigen exposure, Suzuki, et al. [70] demonstrated that its plasma level
increases simultaneously with the increase of steroid hormones in
goldfish. Nevertheless, in vitro incubation of IgM-secreting cells with a
high dose of testosterone has exhibited tissue-specific functions; it also
decreased the number of IgM-secreting cells and suppressed secretion of
IgM by cells from the peripheral blood leukocytes, head kidney and
spleen of common carp [71]. 11-KT decreases IgM production in many
teleost fish species [71-73]. Testosterone, 11-KT and 17 p-oestradiol
(E2) decreased IgM secretion from the spleen and head kidney lym-
phocytes [73].

The egg yolk precursor, Vtg, is a multivalent pattern recognition
receptor which has the ability to recognize pathogens via interaction
with pathogen-associated molecular patterns receptors [74,75], and it
has hemagglutinating and antimicrobial capabilities [76-79]. In vitro
treatment of male or female tilapia hepatocytes with DHT for 48 h
significantly enhanced Vtg protein release [80,81]. Moreover, a short
exposure to MT caused a delay and/or inhibition of hatching at 24 h,
cardiac oedemas, spine deformities, eye malformations at 48 h and
reduced Vtg levels in newly hatched zebrafish [33], but short-term (7
days) treatment of adult male zebrafish with MT (4.5 ng/L) sig-
nificantly increased the level of Vtg compared to solvent controls.
However, previous results revealed that exposure to MT at higher
concentrations did not increase Vtg levels [82].

In general and according to Cuesta et al. [83], Abo-Al-Ela et al. [29]
and Abo-Al-Ela et al. [40], the administration of androgens negatively
modulates the expression of immune-related genes (with earlier up-
regulation and late down-regulation), and disrupts the immune system
functions (in short-term treatment that ranged from 7 to 10 days), such
as phagocytosis (suppressed), lysozyme activity (enhanced), comple-
ment and peroxidase activities (enhanced).

3.4. The impact of androgens on phagocytosis

Phagocytosis is the process whereby cells recognize and engulf
foreign particles (usually more than 0.5 pym in diameter). It plays an
important role in the host's immune defence against invading pathogens
[84]. Cytokines, central regulators of the main activities of phagocytes,
modulate the phagocytes' interactions with foreign molecules [85].
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Interleukin 1 beta (I11f), interleukin 8 (I18) and tumour necrosis factor
a (Tnfa) can enhance phagocytosis and chemotaxis in trout and bluefin
tuna [86-89]. The expression of immune genes, including cytokines can
greatly affected by MT treatment [29,40], thus, it might reflected on the
phagocytosis process.

Progesterone or 11-KT injections can suppress some immune para-
meters, including phagocytosis, in carp fish, both in vivo and in vitro
[90,91]. Also, leukocytes' function is negatively correlated with an-
drogen plasma levels [92]. Testosterone causes a significant loss of
leukocytes and significant immunosuppression, and, even after adding
a supernatant of proliferating lymphocytes not exposed to testosterone,
this action cannot be reversed [50]. Short-term treatment with MT
significantly depressed the phagocytic process (phagocytic activity and
index), but stimulated lysozyme activity in adult Nile tilapia [40].
However, testosterone microencapsulation implants stimulated phago-
cytic activity and the reactive oxygen species production of leukocytes
after 21 days of implantation in gilthead seabream [49]; this can be due
to variations in fish species responses, chemicals used, duration of
treatment or mode of administration.

3.5. The impact of androgens on histology of immune-related organs

The liver is a vital organ involved in fish defence, and it produces
cytokines in healthy and diseased conditions [93]. Androgens are he-
patotoxic [94]. Nile tilapia larvae that were fed dietary MT for 28
consecutive days showed a mild nuclear pleomorphism of hepatocytes
and moderate to moderately severe vacuolation of the liver. In addition,
hepatocytes exhibited mild to moderately severe accumulations of in-
tracellular protein [26]. In salmon, MT injection caused degeneration of
the kidney and liver [95]. Prolonged MT treatment had a harmful effect
on the kidneys and the livers of juvenile channel catfish as evidenced by
marked oedema in the renal corpuscles and tubules and liver weight
increases caused by the hepatotrophic response [96].

Massive doses of dietary MT in goldfish caused an extensive pro-
liferation of the rough endoplasmic reticulum, the production of nu-
merous secretory granules and hypertrophy of the Golgi apparatus in
the liver [97]. Additionally, anabolic androgenic steroids caused a de-
velopment of hepatocellular adenomas, peliosis hepatis and hepato-
cellular hyperplasia [reviewed in [98]].

Electron microscopic examination of rat hepatic tissue from MT-
treated animals showed hepatocytic ultrastructural alterations. The
most notable changes were swelling of mitochondria, which presented a
slightly defined, cristae and electron-lucent matrix and an obvious in-
crease in the number of lysosomes [99].

The spleen and head-kidney are major organs that comprise the fish
immune system [100]. MT exposure stimulated kidney hypertrophy in
three-spined sticklebacks [101]; increased the height of kidney epi-
thelial cell in the brook stickleback [102]; and caused necrosis and
minimal to moderate hyaline droplet degeneration of tubule epithe-
lium, scattered eosinophilic granular cells and a number of regenerating
(developing, immature) tubules in the kidney tissue of Nile tilapia [26].

Although the treatment with MT in Nile tilapia showed an increase
in melanomacrophage centres in the spleen and the kidney, but MT
conjointly administrated with vitamin C showed more increases and
accumulation in the melanomacrophage centres in the spleen and the
kidney in comparison to MT, vitamin C or control treated groups [40].
According to Abo-Al-Ela et al. [40], vitamin C was able to maintain or
enhance the other immune functions, such as phagocytosis in spite of
the immunological parameters were negatively affected by MT. This
reflects and confirms on the powerful action of vitamin C as potent
immunostimulant and antioxidant agent.

4. The impact of oestrogens on immunity

In many cases, oestrogens are used in monosex farming, such as in
eel production and in preliminary steps of production of YY super-
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males; and oestradiol is one the preferred oestrogen substance in this
case. The modulation of gene expression in fish immune system via
oestrogens has been reviewed in Ref. [103]; and herein, this section
focuses on some studies that may not mentioned in this reference.

Kimble et al. [104] found that oestrogen deficiency caused stimu-
lation of macrophages via increasing IL1 and TNF. In addition, TNFa
and interferon gamma (IFNy) levels declined in oestradiol-treated mice
in comparison to non-treated mice [105]. Administration of female
hormones, such as oestrogen or progesterone causes a decrease in the
lymphocyte count [106]. In vitro, oestradiol significantly inhibited the
mitogen-induced proliferation of peripheral blood lymphocytes [107].
The effects of oestrogens are mediated through leukocyte-specific oes-
trogen receptors that located on immune cells, such as leukocytes and
this way estrogenic substances can participate in the immune response
process [108].

Treatment of T-cells with E2 for 24 h showed a dose-dependent
repression of TNFa induced cytotoxicity [109]. E2 suppressed the
rainbow trout leukocyte proliferation in vitro [110]. In the most cases,
the gene expression analysis experienced an early up-regulation. Short
exposure to chemical pollutants or E2 induced, in a concentration-de-
pendent manner, antioxidant activity and innate immune gene ex-
pression in zebrafish [111,112]. Vtg was up-regulated as early as four
days post-fertilization after exposure to E2 [113] and also by 17 a-
ethinyl oestradiol (EE2) at different periods of early development
[114,115].

Japanese medaka exposed to E2 (0.1-10 ug/L) for 28 days showed a
variable expression pattern of immune-related genes; complement
components (C3-1, C3-2, Bf/C2), lysozyme and ceruloplasmin were
down-regulated, while il-21, ifn, novel immune-type receptor-18 and
Ikaros were up-regulated [116]. Alongside after long-term treatment
with dietary E2 in rainbow trout, no or significantly low up-regulation
of the complement genes, including C3-1 and C3-3 was detected fol-
lowing the bacterial challenge in compare to control [117]. These re-
sults apparently show that the natural estrogen, E2 harms the ability of
immune system to cope with the bacterial infection and lowers the
standby defenses.

Furthermore, EE2 may change the capacity of fish to properly re-
spond to infection. The exposure of gilthead seabream to EE2 for 15
days inhibited, in a dose-dependent manner, ilIff gene expression
[118]. Furthermore, detoxification and antioxidant systems are altered
by the hormone treatment. EE2 dietary treatment in female largemouth
bass affected a set of genes related to oxidative stress and immunity.
The hepatic glutathione S-transferase mRNA expression was sig-
nificantly increased while glutathione peroxidase mRNA levels were
significantly reduced, indicating a potential oxidative response in the
liver after EE2 treatment [119]. In zebrafish, EE2 significantly in-
creased Vtg concentration [120]. In addition, phagocytic indices of
juvenile yellow catfish exposed to 1 ng/L EE2 were lower than control
group [121].

On the histopathological level, hepatocytes of fish liver exposed to
EE2 or E2 were eosinophilic and enlarged, and their nuclei were en-
larged with a large prominent nucleolus. The hepatic vessels contained
a considerable amount of eosinophilic material (presumed to be Vtg),
which accumulated in the trunk kidney and which was pronounced in
renal tubules and glomeruli [122].

5. Conclusive remarks and further perspectives

Fish culturing and production is an important investment. Monosex
aquaculture, particularly all-male, is critically needed; and, hormones
are widely used in this industry. However, hormones alter various body
systems, possibly influence the susceptibility of fish to diseases and
opportunistic infections and they can pollute the environment. Thus,
further studies should be conducted to find alternative more safe ways
to ensure all-male aquaculture production, such as using YY males or
adding substances, such as vitamin C that can modulate the effects of
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